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Many medical images suffer from the partial volume effect where a boundary between two structures of interest falls in the midst
of a voxel giving a signal value that is a mixture of the two. We propose a method to restore the ideal boundary by splitting a voxel
into subvoxels and reapportioning the signal into the subvoxels. Each voxel is divided by nearest neighbor interpolation. The gray
level of each subvoxel is considered as “material” able to move between subvoxels but not between voxels. A partial differential
equation is written to allow the material to flow towards the highest gradient direction, creating a “reverse” diffusion process. Flow
is subject to constraints that tend to create step edges. Material is conserved in the process thereby conserving signal. The method
proceeds until the flow decreases to a low value. To test the method, synthetic images were downsampled to simulate the partial
volume artifact and restored. Corrected images were remarkably closer both visually and quantitatively to the original images than
those obtained from common interpolation methods: on simulated data standard deviation of the errors were 3.8%, 6.6%, and
7.1% of the dynamic range for the proposed method, bicubic, and bilinear interpolation, respectively. The method was relatively
insensitive to noise. On gray level, scanned text, MRI physical phantom, and brain images, restored images processed with the new
method were visually much closer to high-resolution counterparts than those obtained with common interpolation methods.
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1. INTRODUCTION

We have developed a 2D method for image interpolation that
uses reverse diffusion to correct for the partial volume effect.
Medical images almost always suffer from a partial volume
effect where the boundary between two structures of interest
falls in the midst of a voxel leading to blurred voxels having
inaccurate intensities. When a digital image is acquired, sig-
nal at frequencies greater than half the sampling frequency is
aliased or lost if antialiasing filter is used. The acquired im-
age contains only low frequencies which introduces blurring
of edges. The problem we are facing is then to recover the
high frequencies from the edges, without changing the im-
ages where information from finer details has been irremedi-
ably lost by the acquisition process. We model the signal of a
voxel as the integral of the signal over the surface delimited
by the voxel limits. We propose a method to interpolate while
recovering the ideal boundary by splitting a voxel into sub-
voxels and reapportioning the subvoxels’ signal. We designed
this method to correct magnetic resonance imaging (MRI)

scans where partial volume is a considerable limitation, but
many other digital imaging applications would benefit from
more accurate image intensity. For example, this is also ap-
plicable to x-ray imaging where there is a partial area effect,
digital photography such as satellite imaging, as well as text
scanning. The method is applied to 2D data but extensions
to 3D should be possible. Here we keep our discussion to 2D
but use the term voxel because most medical images have a
thickness.

There are many methods for image interpolation and
commonly used ones in medical field include nearest neigh-
bor, bilinear, and bicubic spline. To optimally reconstruct
a continuous band-limited signal, one can apply sinc inter-
polation in the spatial or frequency domains to samples ac-
quired with consideration to the sampling theorem [1]. Vari-
ous approximations to the infinite sinc function in the spatial
domain are proposed that address the tradeoff between blur-
ring and ringing artifacts [2, 3]. Such interpolation methods
use only the gray-level information and make no assumption
about the partial volume process. However, the structures
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that we wish to image are seldom band limited (e.g., the
air/skin interface is a step edge having an infinite bandwidth).
More advanced schemes have been designed such as shape
interpolation based upon binary or gray-scale image data [4].
Other methods use nonlinear schemes to enhance edges for
increased visual quality, but rarely rely on physical modeling
of the imaging process [5–7]. In particular, diffusion-based
methods have been proposed to achieve super-resolution.
Most of those techniques start from a blurred interpolated
images (e.g., using bicubic interpolation) and sharpen edges
by controlling the diffusion such that homogenous regions
are filtered and edges between them are enhanced [8–11].
Those techniques achieve impressive visual quality enhance-
ment but they may generate extra features, which may be the
reason that they are seldom used for interpolating medical
images. In this new algorithm, we seek to reduce partial vol-
ume effect in medical images without creating artifact, and
with no consideration to visual image quality.

Classification methods exist that enable partial volume
correction of areas and volumes. These methods model the
image histogram, often as a Gaussian mixture, and use spa-
tial information between voxels to estimate the mix inside
each voxel of the different classes [12–16]. Almost all of these
methods assume that a voxel can contain at most two tissue
types. The performance of these methods depends upon the
accuracy of histogram modeling and often specific parame-
ters such as the number of classes. Such methods can be used
to perform measurements and create high-resolution labeled
images. As far as we know, these methods have not been ex-
tended to gray-scale image interpolation.

Below, we describe our algorithm (Section 2) and the
experimental methods for evaluating the algorithm us-
ing synthetic images and MR images of a physical phan-
tom and human brain (Section 3). Results from the pro-
posed method are compared to conventional interpolation
methods in Section 4 followed by a discussion and conclu-
sion.

2. ALGORITHM

2.1. Assumptions and image model

We assume that the original data present sharp steps be-
tween homogenous regions and that partial volumes/areas
result in a blurring of edges. Further, we assume a model
for the voxel aperture where the signal in a voxel is the in-
tegral of the signal over the volume delimited by the voxel.
That is, the partial volume/area imaging process conserves
signal. In medical images, the assumption of step edges
is clearly relevant at the interface between tissues such as
bones/muscles, vessel wall/lumen, and skin/air. Other tissue
interfaces might not present step edges such as the edge of
a tumor with invaginations into normal tissue. Nevertheless,
the assumption is valid whenever transitions are “sharper”
than the voxel size, which is often the case because experi-
ence shows that higher-resolution clinical MR images typi-
cally result in sharper edges. We assume also 8-neighbor con-
nectivity of homogeneous regions and that the point spread

function of the imaging apparatus is not bigger than the voxel
size.

A brief description of the proposed method follows. It
does not rely on classification and histogram modeling. Sub-
voxels are created using nearest neighbor interpolation, and
the gray level of each subvoxel is considered as “material” able
to move between subvoxels. A partial differential equation is
written to allow the material to flow towards the highest gra-
dient direction, creating a “reverse” diffusion (RD) process.
Changing the sign of the time variable leads to a highly un-
stable equation. Attempts to numerically solve this ill-posed
problem have relied on regularization of the numerical so-
lution by minimizing a functional [17–19], or approxima-
tion of the near past solution from the estimation of well-
posed forward values [20]. The original anisotropic diffusion
scheme [21] has been extended: Gilboa et al. [8] balanced
forward and backward flows and Pollack et al. [9] merged re-
gions to avoid instabilities generated by a discontinuity of the
diffusion coefficient. These related methods do not include
constraints to address the partial volume effect, and require
specifying extra parameters. Some methods based on stabi-
lized shock filters [22], and more recently, work by Breuss
et al. [23] are also related to our algorithm. We present here
some simple constraints that control the reverse diffusion in
the context of image processing without any new free param-
eters. Moreover, convergence is straightforward and there is
no need to specify a number of iterations. Flow is subject
to constraints that tend to create step edges between regions
of different intensities. Material is conserved in the process
thereby conserving MR signal. It should lead to better results
than pure interpolation methods since it uses more informa-
tion, while avoiding the limitations of the pattern recognition
techniques.

2.2. Constrained reverse diffusion

The method is illustrated in Figure 1 in 1D where we use
the term “bin” instead of voxel. The original signal (a) is
discretized causing a partial area/volume artifact (b). In (c),
the discrete signal is oversampled into four identical subbins.
Each gray value of the subbins is then increased or decreased
(arrows) so as to restore the original signal (d). To determine
the direction of the arrows in panel (c) each subbin is con-
sidered made of material that can either flow to a neighbor
subbin if it has higher value or from it if it has a lower value.
We implement this method iteratively.

Equations describing the flow process are now described
on the one-dimensional example from Figure 1. The ob-
served discrete signal subject to partial volume effect is
ỹl with l the original bin number out of L total bins
(Figure 1(b)). The over sampled signal is yi (Figure 1(c)),
with i the new binning out of I bins (I = 4L in this case). For
a given subbin i, the amount of material flowing to, or from,
the right side is yi+1−yi and yi−1−yi for the left side. Material
will be lost if the flow is positive. The balance of material for
a given subbin is the sum of the two sides, expressed math-
ematically as the divergence. Using an iterative approach the
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Figure 1: Principle of partial volume effect correction in one di-
mension. The original 2-class continuous ideal signal (a) is dis-
cretized as in (b) causing some bins to take an arbitrary value when
multiple classes are present. After subsampling 4 times in (c) each
subbins value is increased or decreased (arrows) to reach its correct
value (d).

value yi can be computed at the iteration t + 1 by

yt+1
i = yti − a

[(

yti+1 − yti
)

+
(

yti−1 − yti
)]

(1)

with the constant a > 0 adapting the speed of the flow. This
equation can be rearranged by extracting from a the spatial
size of the subbins di and a time step dt to yield a partial
differential equation when di and dt tend to arbitrarily small
values:

dyi
dt

= a′
d2yi
di2

. (2)

If the constant a′ were negative, this last equation would
be the diffusion or heat conduction equation. In this “reverse
diffusion” case, the positive sign leads to a well-known unsta-
ble behavior. We next describe how to constrain the flows in
a manner consistent with the assumptions described above.

To continue our analogy, in order for any material to
leave a subbin, there must be enough material present. Since
the “low level” of yi is not known, we approximate it using
the minimum value of its neighbors. In addition, material
can leave a subbin only if there is sufficient room to receive
it. That is, the recipient subbin has not reached its “high
level,” as approximated by the maximal value of its neigh-
bors. Hence, the stability of the numerical scheme is enforced
by limiting flow such that a subbin does not give or receive
material such that it will contain material below its low level
or above its high level, respectively. In 1D, each subbin can
receive/give materials from/to two neighbors. We thus divide
the possible flow by 2, equivalent to the CFL bound [24]. The
constrained implementation, with Ni the neighbor subbins

of i, becomes

Qmax
i = maxi′∈Ni

(

yi′
)− yi

2
; maximal outward flow, (3)

Qmin
i = yi −mini′∈Ni

(

yi′
)

2
; maximal inward flow, (4)

Qi,i+1 = max
[−Qmax

i ,−Qmin
i+1 , min

(

Qmax
i+1 ,Qmin

i , yti+1 − yti
)]

;

total flow between subbins i and i + 1,
(5)

yt+1
i = yti −Qi,i+1 , (6)

yt+1
i+1 = yti+1 + Qi,i+1 . (7)

Equation (5) reflects the material constraints from the neigh-
bors. If yi < yi+1, material should move from bin i to bin i+1,
as determined by the positive gradient yi+1− yi, but this flow
should be limited by the room left in bin i+ 1 (Qmax

i+1 ) and the
low level for bin i (Qmin

i ). Therefore the total flow between i
and i + 1 is given by min(Qmax

i+1 ,Qmin
i , yti+1 − yti ). Since Qmax

i

and Qmin
i are always positive or null, the remaining terms in

(5) constrain the flow when yi > yi+1.

2.3. Application to images

For the 2D case, let ˜Y = { ỹlm, l = 1, 2, . . . ,L, m =
1, 2, . . . ,M} be the original image of size L ×M voxels. Let
Y = {yi j , i = 1, 2, . . . , I , j = 1, 2, . . . , J} be the new image
at the higher resolution, where every voxel has been divided
into R2 voxels (I = RL and J = RM). In the 2D case, there
are 2 flows to compute and distribute accordingly: horizon-
tal and vertical. However the computation of Qmin and Qmax

needs to be adapted. In both cases, the neighboring set con-
sidered is the eight-connected voxels of the recipient voxel
Nij . Since edges are favored, the “high level” is not the maxi-
mum from the set, but the 6th highest to ensure that at least
3-connected voxels are considered for an edge. Similarly, the
4th highest value defines the low level. Our first implementa-
tion using the maximal and the minimal values (9th and 1st
instead of 6th and 4th) over the neighboring set Nij yielded
artifacts for high and low levels were driven by noise and not
homogeneous regions of the image. After careful analysis and
experimentations, we believe that the scheme using the 6th
and 4th rank-order statistic is the one giving the best results
both quantitative and qualitative. This scheme can accom-
modate any edge configuration in Nij . The same argument
for numerical stability as above leads to dividing the flow lim-
its by 4. The limits on the flows for a given voxel ij are

Qmax
i j = ord{i′, j′}∈Nij

(

6, yi′ j′
)− yi j

4
,

Qmin
i j = yi j − ord{i′, j′}∈Nij

(

4, yi′ j′
)

4
,

(8)

where ord{i′, j′}∈Nij (n, yi′ j′) denotes the nth highest value over
the set Nij , see Figure 2 for illustration.

As described, the computation of the gradient is done at
the subresolution level (di,dj) and can induce spatial cluster
of materials: materials tend to aggregate into small islands for
the flow might be driven by the noise gradient. To avoid this
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Figure 2: Drawing illustrating the computation of Qmin and Qmax

for a voxel i j, using rank-order statistic. Numbers show the rank of
each voxel gray level in this 3 × 3 neighborhood system; the lower
the number, the smaller the intensity.

problem the gradient is computed on the filtered image such
that materials flow in the direction of the brightest area of
the image avoiding spatial clusters induced by local gradient
fluctuation [25]. We use a Gaussian kernel whose standard
deviation is half a voxel at the original resolution:

̂Y = Y ⊗G(0,R/2), (9)

where G(0, σ) is a Gaussian kernel centered at the origin with
σ standard deviation. The equations for the horizontal and
vertical flows are

Qi = max
[−Qmax

i j ,−Qmin
i+1 j , min

(

Qmax
i+1 j ,Q

min
i j , ŷti+1 j − ŷti j

)]

,

Qj = max
[−Qmax

i j ,−Qmin
i j+1, min

(

Qmax
i j+1,Qmin

i j , ŷti j+1 − ŷti j
)]

.

(10)

The new image can now be updated taking into account
the signal conservation constraint. That is, the signal in a
voxel at the coarse resolution is the sum of the signals in the
voxels at a higher resolution. A solution is to block any flow
across pseudo-boundaries defined by the original resolution.
Using this constraint, the signal will be reapportioned within
an original voxel while preserving the sum over the subvoxels
constant:

yt+1
i j = yti j − Bij

(

Qi + Qj
)

,

yt+1
i+1 j = yti+1 j + BijQi,

yt+1
i j+1 = yti j+1 + BijQj ,

(11)

where Bij =0 when i modulo R =0 or j modulo R =0, and
Bij=1 otherwise.

The method consists of iterating the set of equations (8)
through (11) in this order, and to apply it to all voxels (with-
out identifying those lying on the edges). Typical behavior
for the sum of the absolute flow is shown in Figure 3 top
right: it decreases and converges to zero. To stop iterating, we
chose to test if its value falls below a fraction of its maximum
(< 0.1%). We tested also to stop when entropy was changing
little as shown in Figure 3 bottom right. Entropy is physically
appealing because it relates directly to the quantity of infor-
mation present in the image. Correcting the partial volume

effect is tantamount to reorganizing the information of the
image in a way that is closer to the “true” image. Therefore,
the reduction of the disorder should lead to a lower value
of the entropy. Indeed when images are corrected one can
observe a reduction of the entropy (Figure 3 bottom-right
graph). When the algorithm converges, the entropy should
stabilize to a low value, which could be tested to stop iter-
ating the above equations. However, we found the entropy
measure noisier than the total flow, and we use the latter as a
stopping criterion.

3. EXPERIMENTAL METHODS

To evaluate the performance of the proposed method, we
used a multiclass synthetic image Itrue. Partial volume effect
was simulated by averaging every four voxels into one voxel
(Ired). The new image was then corrected (Icor) and compared
to the original. Since the original is known, several metrics
can be used to quantify the result. We computed common
criteria used in the literature to qualify interpolation algo-
rithms [26]. We used the mean square difference (MSD),

MSD =
∑

Ω

(

Icor − Itrue
)2

∑

Ω 1
, (12)

where Ω is the image domain, and the number of site dis-
agreements (NSD) using a threshold value of 10% of the dy-
namic range:

NSD = 100×∑Ω δ
(∣

∣Icor − Itrue
∣

∣ > threshold
)

∑

Ω 1
, (13)

where δ(c) is equal to one if the condition c is true, and zero
otherwise. In order to provide more meaningful values, we
used the square root of the MSD divided by the dynamic
range of the data. That is, the standard deviation expressed
in percentage of the gray-level range. We refer to that error as
the relative error (RE).

Several digital test images were created. First, a 192× 256
synthethic image was generated with three tissue classes hav-
ing gray values of 50, 100, and 150. Features in the image
were created to mimic tissues interfaces. Outside and four
disks inside the tissue, voxels were set at a low value of 20 to
simulate air, and thus multiple tissue/air boundaries.

Second, we used the classic Lena image. We performed
also some experiment on images where the original cannot
be found but only approximated; therefore, the metrics de-
fined above cannot be computed. We compared results of the
proposed reverse diffusion method, to bicubic or linear in-
terpolation as implemented in Matlab (MathWorks, Natick,
Mass, USA).

Third, since our main interest is to correct for partial
volume effect present in MRI, we conducted several exper-
iments. MRI acquisition was performed on a Siemens Sonata
1.5 T scanner (Siemens, Erlangen, Germany). First, a phan-
tom made of multiple tubes filled with four different so-
lutions of agar gel [27] has been acquired with a T2W se-
quence and phased array surface coils. Imaging parameters
for the turbo spin echo sequence (TR/TE/TI/NSA/thickness/
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Figure 3: Test on synthetic image. An original 192 × 256 gray-level image (a) made of three classes plus background has been degraded
as in (b) to simulate the partial volume effect. After 59 iterations (about 4.5-second CPU time) the corrected image is shown in panel (c)
along with bicubic interpolation (d) of the low-resolution image. On the right side, the total flow over the image (top) as well as the entropy
(bottom) is shown as a function of the iteration number. Images (c) and (d) are to be compared to (a), the original high-resolution image.
Insets in each image are a magnified version of the background circle in the upper-right background circle.

FOV) were as follows: 2R-R/68 ms/600 ms/2/3 mm/13 cm.
Fat saturation was applied. The in-plane resolution was
0.51 × 0.51 mm2. The image was corrected and edges of
the tubes could be analyzed for circularity and sharpness in
the case of multiple gray-level contrasts and the presence of
strong intensity inhomogeneity.

Experiments with noise were done by adding centered
normal noise to the original image as measured by the per-
centage of the noise standard deviation relative to the dy-
namic range. Tests ranging from 0% to 14%. Noise was added
before partial volume simulation because noise during MRI
acquisition comes mainly from weak signal, either because
the number of proton is low in case of high resolution, or be-
cause magnetization has been lost due to relaxation (T1, T2,
or T2∗). Noise added after partial volume simulation would
mostly simulate noise in the MRI equipment known to be
low.

To test the ability to recover data from MRI, we ob-
tained MR images of a physical phantom at various resolu-
tions and tested our ability to recreate a high-resolution ver-
sion. A cylindrical phantom filled with doped water and con-
taining multiple size plastic rods (diameters: 13 mm, 10 mm,
7.5 mm, 6 mm, 5 mm, 4 mm, 3 mm, 2.5 mm, 2 mm, 1.5 mm,
and 1 mm) has been imaged using the same field of view,
but multiple resolution matrices: 128 × 128, 256 × 256,
512×512, and 1024×1024. The different images present dif-
ferent resolutions: 2×2 mm2, 1×1 mm2, 0.5×0.5 mm2, and
0.125×0.125 mm2, respectively. We corrected low-resolution
images and compared them to their corresponding high-
resolution images. Imaging parameters (TR/TE/NSA/slice

thickness/FOV) for the T1W spin echo sequence were as fol-
lows: 400 ms/12 ms/1/5 mm/25.6 cm. Because it is difficult to
compare directly images acquired with different parameters
at different time points, we compared the area of the phan-
tom in different images. Since it is a 2-class data (air/rods
with no signal, and doped water with strong signal), the cu-
mulative sum of the histogram presented a sharp change
around the gray value in between the dark voxels of the back-
ground and the bright voxel of the phantom. An ideal im-
age histogram would have only two peaks, its integral would
present an ideal step. Because of noise and partial volume ef-
fect the data present a smooth step. We estimated the area of
the water in the image by counting the number of voxels in
the middle of the step and taking into account the in-plane
resolution.

We acquired human images for testing the algorithm.
Sagittal slices of a human head were acquired using a T1W
acquisition as for the phantom above. Qualitative compar-
isons are made between slices at different resolutions, since
even a small subject motion will hinder quantitative com-
parison. Finally, we corrected transverse images of human
neck that were acquired for evaluation of atherosclerosis.
For this latter application, MR scans were conducted on the
same scanner as before with a custom-built, phased array
coil, with two coils on each side of the patient’s neck. Dark
blood images were obtained using ECG-triggered double in-
version recovery (DIR) turbo spin echo sequences. Imag-
ing parameters (TR/TE/TI/NSA/thickness/FOV) were as fol-
lows: T1W: 1R-R/7.1 ms/500 ms/2/3 mm/13 cm; PDW: 2R-
R/7.1 ms/600 ms/2/3 mm/13 cm; T2W: 2R-R/68 ms/600 ms/
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Figure 4: Performance on noisy synthetic image. Multiple level of normally centered noise, as measured as the percentage of standard
deviation to dynamic range, has been added on the synthetic image from Figure 3 and corrected. Example of details is shown in the top
row for 10% noise level: (a) original noisy image, (b) simulated partial volume effect, (c) corrected image with reverse diffusion, (d) bicubic
interpolation, and (e) bicubic interpolation of (b). The two graphs show NSD (f) and RE (g) criteria for noise levels ranging from 0% to
14% (the lower the better).

2/3 mm/13 cm. Fat saturation was applied. The in-plane res-
olution was 0.51× 0.51 mm2, and slice thickness was 3 mm.

4. RESULTS

4.1. Synthetic multiclass image

We evaluated our method on a multiclass synthetic image
(Figure 3). The corrected image with the new algorithm is
much closer to the high-resolution original than that inter-
polated with a bicubic kernel. Edges are sharp whereas bicu-
bic interpolation introduces blurring. When three classes are
mixed in a single voxel or when a detail is smaller than a
voxel size (10 o’clock position on the border of the black
circle zoomed in the insets), the algorithm cannot recover
the original information reaching the Shannon information
theory limit. In this example, the algorithm stopped after
59 iterations, about 4.5 seconds on a Pentium IV class per-
sonal computer, when the total flow over the image fell to
less than 0.001 times its maximal value, as shown in the top-
right graph. We implemented the algorithm in Matlab code

on a Pentium IV 2.4 GHz personal computer. A more effi-
cient implementation and a compilation step would certainly
decrease the computing time.

Sensitivity to noise was tested on this synthetic image
(Figure 4) with noise level ranging from 0% to 14% (noise
standard deviation as a percentage of the dynamic range).
The top row of pictures in Figure 4 shows details for the 10%
noise-level case, with the algorithm stopped after 45 itera-
tions. Visually RD gave crisp edges as compared to bicubic
or linear interpolation indicating that partial volume is cor-
rected even in the presence of noise. Quantitative measure-
ments confirmed those results as shown in Figures 4(f) and
4(g), where the NSD and RE, respectively, are plotted. For the
noise-free case the relative errors (RE), defined as the ratio of
the standard deviation of the errors relative to the dynamic
range, were 3.8%, 6.6%, and 7.1% for the proposed method,
bicubic, and bilinear interpolation, respectively, and as com-
pared to 7.2% before correction. As measured by RE, RD
method is superior to bilinear and bicubic interpolations at
all noise levels, but the improvement is reduced at the higher
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Figure 5: Original 100 × 100 voxels Lena picture (a) is interpolated with the proposed method two times (b) and four times (c) as well
as four times with bicubic interpolation (d). Lower row of panels show a zoom on the left eye of the corresponding top row images. The
interpolated image with RD ((c) and (g)) is much sharper than the bicubic interpolated one ((d) and (h)).

noise levels. For the NSD (Figure 4(e)), in the noise-free case,
only 3.1% of the voxels have greater than 10% errors for RD,
as compared to 11.7% for bicubic interpolation. As noise is
increased, RD always outperforms bicubic. At high noise lev-
els bilinear has a reduced NSD value, but this noise reduction
effect comes at the expense of blurred edges. RD performs
better than bicubic interpolation at all noise levels.

4.2. Lena gray-level image

Figure 5 shows result of the proposed method applied to the
Lena image. The top row shows a cropped 100 × 100 detail,
whereas the bottom row shows a zoom on the left eye. RD
has been applied twice increasing the resolution by four. One
can appreciate the reduction of the blocking artifact present
in the original (a) and (e). The result images (c) and (g) are
crisper than when interpolated with a bicubic kernel; for ex-
ample, the lashes in the zoomed insets as well as the smoother
contour of the nose and the chin. This technique might en-
hance digital artworks when the size of images needs to be
increased.

4.3. MRI physical phantom

We imaged a MR phantom made of tubes to simulate gray-
level images with different contrast, using surface array coils
that induce important intensity inhomogeneity (Figure 6).
Image resolution was increased four times and tube edges
presented sharp boundaries, without the blurring associated
with bicubic interpolation. No artifact from the intensity in-
homogeneity was noted, and circular shapes became smooth
as one should expect.
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Figure 6: Correction of an actual MRI image of a physical phan-
tom. The original T2W image is shown in panel (a) with an in-plane
resolution of 0.72× 0.72 mm. The proposed method is applied two
times doubling (b) and quadrupling (c) the number of voxels. For
comparison, the original image interpolating four times with bicu-
bic interpolation is shown in panel (d).

A standard multiresolution phantom allowed us to com-
pare the correction of structures of different size (Figure 7).
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Figure 7: Test on physical MRI phantom. A phantom has been acquired with 256×256 matrix (1×1 mm2 shown in panel (d)) and corrected
with the proposed method to yield a 512 × 512 image, shown in panel (a) and in details in panel (e). Panel (b) shows areas computed by
cumulative sum of the histograms for different images displayed on the bottom row: an acquired high resolution 512 × 512 image at the
same location (dotted line and panel (c)), the corrected image (solid line and panel (e)), and the 512 × 512 bicubic interpolation (dashed
line and panel (f)). Area, as measured by the middle of the horizontal slope, is more accurate with the reverse diffusion than with bicubic
interpolation.

The corrected image shows sharp contour of the circu-
lar plastic rods down to the 1 mm rod size. The 1.5 mm size
rod was slightly improved, and the 1 mm size was almost not
changed, a desirable behavior when features are equal to or
lower than the voxel size (1 × 1 mm). The sharpening of the
edges with RD correction is more accurate than the bicu-
bic interpolation method. The area measured by threshold-
ing at increasing gray-level value was closer to area measured
on a high-resolution image than with bicubic interpolation

(Figure 7, panel (b)). This behavior is an important feature
of the proposed method, and diffusion-based filters in gen-
eral. Because of the flow conservation imposed in the algo-
rithm and adiabatic conditions at image borders, the integral
over the whole image is kept constant during the diffusion
process. This is very important for medical images where of-
ten such integral computations are performed to quantify
pathology.
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4.4. MRI of human head and neck

Finally we tested the method on actual sagittal slice of hu-
man head. High-resolution images could be compared to
corrected low-resolution images taken at the same location.
Figure 8 shows one slice of this experiment, where improve-
ment is obvious, as exemplified in the details of the pons
shown in panels (b), (c), (d), and (e), respectively, for the
high resolution, low resolution, corrected with RD, and in-
terpolated with bicubic kernel images, respectively. Details
on the corrected images are sharper and comparable to the
high-resolution image details. Importantly no artifact can be
observed: partial volume effect is reduced when possible and
the image is unchanged otherwise. Figure 9 shows a PDW
image of the neck acquired with surface array coils that in-
duce strong intensity inhomogeneity. RD decreases the par-
tial volume effect, even in these low-contrast, low-SNR im-
ages.

5. DISCUSSION AND CONCLUSION

The proposed method gives improved subjective image qual-
ity and truer intensities as compared to conventional inter-
polation schemes. The reverse diffusion method allows one
to interpolate images while recovering edges which have been
blurred due to the partial area/volume effect. Although im-
provements in qualitative image quality is not our goal, sub-
jective blurring of interpolated images is reduced on syn-
thetic, physical phantom, and brain MR images (Figures 5–
9) as compared to conventional interpolation schemes used
in medical image analysis. Importantly, these improvements
are present without introducing artifacts and without adjust-
ment of free parameters. Quantitative evaluation on the syn-
thetic images showed that the true signal intensity was re-
covered at edges and that the interpolated image was very
close to the actual high-resolution image (Figures 3 and 4).
Very importantly, the signal is conserved (Figure 7). Because
of this constraint, measurement of signal intensity should be
more accurate. In addition any segmentation method based
on gray level should also benefit.

So far our method has been implemented on 2D images.
We do not foresee any difficulty to extend the algorithm to
3D. The potential benefit in 3D should be greater because
medical images are often acquired with thick slices. Reduc-
tion of partial voluming in all three directions should help to
segment convoluted or elongated anatomical structures such
as brain or vessels, and should improve multiplanar refor-
matting and volumetric visualization methods. For example,
in Figure 9 the image shown is one slice among ten taken
to evaluate atherosclerosis in carotid arteries. In these thick
slices (resolution is 0.5 mm × 0.5 mm × 3 mm), partial vol-
ume degradation may occur in the z-direction that is not cor-
rected. With extension to three dimensions, the new method
should address this issue. However in some situations, the
distance between two slices can be higher than the slice thick-
ness, creating gaps in the dataset. Some interpolation meth-
ods can estimate the missing data, but since RD conserves
signal intensity, it is not suitable for noncontiguous image
data.

RD is relatively insensitive to noise. That is, we found
that partial voluming can be reduced on simulated data
even in the presence of noise (Figure 4), as well as on MR
images with typical noise levels (Figures 6–9). However,
it should be noted that as RD enhances edges blurred by
partial volume effect, it acts as a high-pass filter and en-
hances noise. Indeed we corrected a uniform image with
noise and verified the increased energy in the high-frequency
portion of the spectrum (results not shown). A preprocess-
ing step of low-pass filtering could be used with very noisy
data.

RD can recover sharp edges. Because a model for partial
voluming is used in our method, infinitely sharp edges could
theoretically be fully recovered to the limit of the data res-
olution. In contrast, features smaller than a voxel cannot be
recovered since no particular information is available to the
algorithm. RD can thus be considered as a nonlinear high-
pass filter, acting mostly for edge information and able to
estimate the high-frequency components of edges above the
Nyquist frequency. The high frequencies in the original data
higher than the Nyquist frequency that are not recovered cor-
respond to structure smaller than a voxel size, as showed in
results on our synthetic phantom (Figure 3). Satisfactorily in
this latter case, the method does not change the data nor pro-
duces artifact.

Entropy of images is reduced by the RD process after
correction. The graph of the entropy showed in Figure 3
(bottom-right panel) is typical for noise-free images. It de-
creases rapidly and then converges to a final lower value.
This observation supports the argument put forth in the in-
troduction section: compared to classic interpolation tech-
niques where only the gray level of the voxels is taken into
account, the proposed method uses the extra knowledge that
the images have been subject to partial volume artifact. That
is, the entropy of the corrected image is lower than the orig-
inal low-resolution data, and lower than with bicubic or bi-
linear interpolations (results not shown). In the presence of
noise, the curve of entropy as a function of iteration number
is different: the entropy does not decrease as much as com-
pared to the noise-free case, and rather increases if the noise
level is high. Indeed, when the algorithm is run on an im-
age with random noise only (results not shown), the entropy
increases monotically at each iteration.

Reversing diffusion to enhance interpolated images has
been previously proposed [8, 28], and is also closely re-
lated to shock filters [10, 11, 22, 23]. Gilboa et al. [8] add
an extra term to the original anisotropic diffusion scheme
such that the diffusion coefficient is negative for high gra-
dients and positive for small ones. In order to stabilize the
method, negative flow is balanced by the positive one, and
the diffusion coefficient is set to zero at very high gra-
dients, presumably where there is an edge. Their scheme
called forward-backward diffusion uses two extra parame-
ters, and produces very impressive image enhancement. The
authors suggest applying it after bicubic interpolation to
obtain super-resolution images. Our method is different in
three fundamental aspects: there is no filtering in homoge-
neous regions, the integral over a voxel is kept constant, and
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Figure 8: Test on actual human MRI. A 2D sagittal slice of a human head has been acquired using 256 × 256 points and corrected using
the proposed method to yield a new 512 × 512 image (a). Details of the medulla oblongata are shown for (b) same image acquired at high
resolution 512× 512, (c) input 256× 256 image, (d) corrected 512× 512 image, and (e) bicubic interpolation of the input image.

no extra parameter is needed to characterize an edge. As a
result, images processed with RD are very close to true data
(Figures 3, 4, 7, and 8), but they can be noisier than those ob-
tained using those alternative methods. We are investigating
ways to extend our method to include noise reduction.

In our current implementation the point spread function
should be small relative to a voxel. One of our main assump-
tions, shared by almost all methods correcting partial volume
effect [16], is that the signal is averaged over a voxel. This
requires the point spread function (PSF) to be about equal
or smaller than the size of a voxel at the coarse resolution,
which is reasonable in MRI. If this is not the case, most of

the blurring would come from the PSF convolution with the
data rather than signal averaging inside the voxel.

For the case of a large PSF, it would be necessary to con-
trol the flow of material over a spatial support corresponding
to the size of the PSF rather than the original voxel. In this
event, reverse diffusion could be considered as a deconvolu-
tion method. The heat conduction equation has a Gaussian
distribution as a solution. An explicit numerical implemen-
tation of the diffusion equation is equivalent to filtering by
convolving with a Gaussian whose standard deviation is the
square root of twice the diffusion time [29]. However, a more
realistic deconvolution algorithm should take into account
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Figure 9: Low-contrast image interpolation. A PDW MR image of a patient neck suffering from atherosclerosis in the left internal carotid
artery is shown in (a) along with two details in panels (b) and (c). The same details are shown in (d) and (e) after RD interpolation, and
in (f) and (g) after bicubic interpolation. Even in this low-SNR and low-contrast example, partial volume has been reduced as seen in the
artery boundaries for example.

the size of the deconvolution kernel and should track the spa-
tial spread of the signal for each voxel.

In conclusion, we have presented a totally automatic
method to reduce partial volume effect of images. It does
not need any parameters and restores images by implement-
ing the diffusion equation backward in time. As compared to
conventional interpolation techniques, we obtained excellent
results on simulated multiclass images, gray-level facial and
text images, and MRI scans.
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